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On highly convergent 2D acoustic and elastic wave
propagation models
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SUMMARY

The presented approach for reducing the phase and group errors in short wavelength pulses propaga-
tion modelling is based upon modal error minimization. A computational model is built of component
substructures (CS) the matrices of which are obtained by modal synthesis. The necessary modal prop-
erties of CS are established by solving the cumulative modal error minimization problem for a sample
domain the exact modal frequencies of which are known theoretically. Earlier the approach has been
demonstrated to work well in 1D case. In this work the results for 2D rectangular meshes describing
elastic and=or acoustic wave propagation have been obtained. As a result, models having up to 80%
of modal frequencies with an error less than 2% can be obtained by using the optimized component
substructures. Though the synthesized mass matrices are non-diagonal, the obtained dynamic models are
able to simulate short transient waves and wave pulses propagating in elastic or acoustic environments
by using only a few nodal points per pulse length. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shape of a propagating short wavelength pulse simulated in a discrete mesh is inevitably
distorted if the distance travelled by the pulse comprises a large number of lengths of the
pulse. As a result, the shape and duration of the simulated pulse become very di�erent from
the values expected theoretically. An important source of distortions is the phase error inher-
ently produced by the discrete model. The errors can be minimized by means of very dense
meshing, however, this makes the simulation complex and requiring huge computational re-
sources. Modal errors of a computational model can be regarded as an origin of phase errors.
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As a consequence, di�erent harmonic components of waves comprising the wave pulse prop-
agate with di�erent velocities and produce group errors of wave propagation.
As early as in 1982 di�erent modal frequency convergence features of dynamic models

obtained by using lumped and consistent forms of mass matrices have been noticed [1]. The
convergence of modal frequencies of dynamic models can be improved by using the ‘general-
ized’ form of the mass matrix obtained as a weighted superposition of lumped and consistent
mass matrices [2]. Approaches concentrating on improvement of modal convergence properties
and retaining the diagonal form of the mass matrix have been presented in References [3–6].
Element type 99 of LSDYNA program is intended for vibration studies carried out in time

domain. These models may have very large numbers of elements and may be run for relatively
long durations. This is achieved by imposing strict limitations on the range of applicability,
thereby simplifying the calculations: elements must be cuboid; small displacement, small strain,
negligible rigid body rotation; elastic material only. The element formulation also includes
single element bending and torsion modes [7].
The non-diagonal matrices obtained by modal synthesis can give better results. In 1D

case they produce models having 60–80% of modal frequencies with error values less than
3% [8]. In this work we demonstrate that the main principles of the approach presented in
Reference [8] can be also applied for 2D rectangular wave propagation models. CS are ‘op-
timized’ in order to provide minimum cumulative modal frequency errors of selected sample
domains. We demonstrate that the structure of any size assembled of such CS has approx-
imately the same percentage of ‘close-to-exact’ modal frequencies. Though the synthesized
mass matrices are non-diagonal, the obtained dynamic models are able to simulate transient
waves by using only a few nodal points per pulse length.

2. GENERAL RELATIONS OF MODAL SYNTHESIS

Finite element models of small vibrations and waves in elastic or acoustic continua are pre-
sented by the well-known semi-discrete structural dynamic equation as

[M]{ �U}+ [C]{U̇}+ [K]{U}= {R(t)} (1)

where [M]; [K] are structural mass and sti�ness matrices of the element, {R} is the nodal vec-
tor containing the lumped forces. In problems addressed in this work we assume the damping
forces to be very small. If necessary, slight damping can be conveniently introduced by means
of the proportional damping matrix [C]= �[M]+�[K]. The reason for such a simpli�cation is
that in many ultrasonic measurement applications propagating pulses do not fade perceptibly
after travelling distances considered by simulations, as well as, the investigations are mainly
focused on the wave type transformations caused by re�ections and interactions.
The structural matrices used in (1) can be expressed by using modal synthesis relations as

[M]= ([Y]T)−1[Y]−1; [K]= ([Y]T)−1[diag(!21; !
2
2; : : : ; !

2
n)][Y]

−1 (2)

where !1; !2; : : : ; !n are the modal frequencies of the model of dimension n× n, and [Y]=
[{y1}; {y2}; : : : ; {yn}] are the modal shapes of a non-damped structure. By using relations (2)
desirable dynamic properties expressed in terms of known modal frequencies and modal shapes
can be supplied to model (1).
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We may assume that the presence of a small amount of the structural damping does not
introduce any perceptible changes in the modal synthesis procedure. The proportional damping
matrix is obtained as a linear combination of synthesized matrices [M] and [K] rather than by
synthesizing matrix [C] directly. The coe�cients �; � can be easily determined if the damping
ratio values of the structure corresponding to two di�erent modal frequencies are known. If
damping forces are large, the full complex eigenvalue problem has to be treated and the modal
synthesis performed by using complex mode shapes and frequencies.
In this work we neglect the damping forces completely by taking �=�=0.

3. ‘OPTIMUM’ COMPONENT SUBSTRUCTURES

In wave propagation models large parts of computational domains can be built of component
substructures (CS). Figure 1(a) presents a CS containing 5× 5 nodes(CS 5× 5). A CS can be
treated as a higher-order element, however, the principle of obtaining its matrices is di�erent
from traditional higher-order elements as the matrices of a CS are generated without directly
employing the shape functions as interpolation tools. As a limiting case, a CS may consist of
a single quadrilateral element, or may be a larger domain the shape of which is geometrically
similar to the shape of the element. We need to optimally modify the spectral properties of
a CS in order to produce the minimum modal frequency error of the whole structure.
In our approach, formation of the mode set for modal synthesis is performed as follows.

Assume we need to synthesize the matrices of a CS the total number of degrees of freedom

Figure 1. (a) Component substructure CS 5× 5; (b) component substructure meshed by quadrilateral
elements; and (c) quadrilateral sample domain 13× 13 nodes assembled of nine CS 5× 5.
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(DOF) of which is n and the number of rigid body modes of the CS is r. Assume also that
exact values of all n modal frequencies 0; 0; : : : 0; !r+1; !r+2; : : : ; !r+n of the CS are known
(the �rst r frequencies are always zeros).
Though exact modal shapes of the CS may be known as well, we are not able to present

them uniquely in the rough mesh. In Reference [8] we used a procedure based on projection of
exact modal shapes on the rough mesh of a CS in 1D. In this work a slightly di�erent approach
has been used which worked more reliably in 2D case. We obtain the set of modal shapes
used for modal synthesis by solving an eigenvalue problem for a free CS roughly meshed by
using traditional elements (e.g. four node rectangles in 2D case) in such a way that all nodes
of the CS are the nodes of the mesh, Figure 1(b). Moreover, for obtaining each jth modal
shape a new jth eigenvalue problem is solved where generalized mass matrices of elements are
employed as [Me]= kLj[Me

L]+(1− kLj)[Me
C], j= r+1; : : : ; n. The weight coe�cient 06kLj61

speci�es the contribution of the lumped mass matrix [Me
L] and (1− kLj) correspondingly

speci�es the contribution of the consistent mass matrix [Me
C] to the generalized mass matrix

[Me] of an individual element. Only the jth modal shape is picked from the full set of modes
presented by the solution of the jth eigenvalue problem and included into the modal shape
set used later for modal synthesis. The values of coe�cients kLj used for obtaining each jth
mode are not known in advance as �nally they are obtained as a result of an optimization
process described below. As an initial guess, values kLj=0:3–0:7 could be regarded as a
reasonable choice based on experience as for di�erent physical environments and di�erent
types of elements the values of kLj in this range ensure the best performance of the models
meshed by traditional elements. In our numerical experiments we usually started form values
kLj=0:5. Finally the rigid body modes 1 to r are generated, and the mode set for modal
synthesis reads as !1; !2; : : : ; !n; [Y]= [{y1}; {y2}; : : : ; {yn}].
Modal frequencies and shapes are further modi�ed by scaling them as

[diag(0; : : : ; 0; �!r+1!
2
r+1; �

!
r+2!

2
r+2; : : : ; �

!
r+n!

2
n)] = [diag(!

2)]{Q!} (3)

[{ ỹ1}; : : : ; { ỹr}; �yr+1{ỹr+1}; : : : ; �yn{ỹn}] = [Ỹ]{Qy} (4)

where {Q!}T = {1; : : : ; 1; �!r+1; : : : ; �!n }, {Qy}T = {1; : : : ; 1; �yr+1; : : : ; �yn} are coe�cients the values
of which need to be speci�ed. Initially, coe�cients {Q!} and {Qy} have unity values.
The above presented modi�cations of the modal set preserve the physical essence of an

unconstrained CS. The modal frequencies corresponding to the rigid body modes are zeroes
and the modal shape vectors remain orthogonal and express essentially the same modal shapes
as before the modi�cation. Also the total mass of the CS remains unchanged.
The optimization is performed by assembling CS into sample domains of a shape similar

to the shape of a CS provided that su�ciently large number of exact modal frequencies of the
sample domain is known, Figure 1(c). As an example, for rectilinear and rectangular acoustic
domains such modal frequencies are available analytically. In other cases a highly re�ned
model of the sample domain can be used in order to obtain ‘nearly exact’ (say, ¡0:5%
error) modal frequency values. Now the modal frequency error minimization problem can be
formally presented as

min
kLj;{Q!};{Qy}

�=
N̂∑

i=r+1

(
!̂i − !̂i0
!̂i0

)2
(5)
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where the penalty-type target function presents the cumulative modal frequency error of the
sample domain, !̂i is the modal frequency of ith mode of the structure, !̂i0 is its exact value
known theoretically or obtained by using a highly re�ned �nite element model. Number N̂ of
modes contributions of modal errors of which are included into function (5) can be selected
freely. It means that namely these N̂ lower modes will have minimized modal errors. We
suggest N̂ to be taken as 30–80% of the total number of modes of the sample domain. Our
experiments demonstrate that the percentage of minimized error (say, 0.5–2%) modes of the
structure can be increased if larger individual CSs are employed. As an example, by using CS
of size 2× 2 (CS 2× 2) modal errors of about 30% of modes of the domain can be expected
to be made lower than 2%. Meanwhile, the CS 5× 5 allow to achieve minimized modal errors
over almost 80% of modes. The thorough discussion on this is presented in Section 4 of this
paper.
Practically, the size of the sample domain is determined by a reasonable amount of calcula-

tions. Our numerical experiments demonstrate that often it is enough to perform optimization
on a sample domain consisting of only several CSs, and the optimized matrices of a sin-
gle CS work well if a considerably larger structure is assembled. We cannot present any
theoretical proof of the validity of the approach, however, numerical experiments presented
in Reference [8] and in this work illustrate that it works.

4. NUMERICAL RESULTS

Figure 2 presents the results obtained by investigating the modal properties of the quadrilateral
acoustic sample domain 13× 13 nodes. Figure 2(a) demonstrates the relative modal errors
of the sample domain assembled of traditional quadrilateral elements and by using lumped,
consistent and generalized mass matrices. The modal error distribution for the three types of
models is quite typical. Lumped matrices have a tendency to diminish the modal frequency
values. On the contrary, consistent mass matrices produce oversized modal frequency values.
The errors of the models based on generalized mass matrices are always smaller, how-

Figure 2. Relative modal errors of quadrilateral acoustic sample domain 13× 13 nodes obtained by
using: (a) quadrilateral elements with lumped (1), consistent (2) and generalized kL =0:35 (3) mass
matrices; and (b) CS 2× 2 optimized over 30% of modes (2) compared to quadrilateral elements with

generalized mass matrices (1).
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ever the modal errors cannot be achieved to be close to zero over all modal frequency range.
If we use the same generalized mass matrix for each individual element, optimum value of kL
may be easily found by a numerical experiment. The value kL =0:35 represented by curve 3 in
Figure 2(a) produces nearly optimum modal frequency error for an acoustic domain assembled
of traditional four-node quadrilateral elements. An analysis presented in Reference [8] for 1D
case demonstrated that the ‘minimum’ cumulative modal frequency error over all modal fre-
quency range is not necessarily the ‘optimum’. The performance of wave propagation models
was better if very small modal frequency errors over the range of 60–80% of lower modes
could be ensured rather than an even distribution of the errors over all modal frequency
range achieved.
Two curves are presented in Figure 2(b). The �rst one is the same as the 3rd curve in

Figure 2(a). Here and further in the text it is used as a reference curve in order to compare
and evaluate the performance of synthesized CS. The second curve in Figure 2(b) presents
the results obtained by using optimized CS 2× 2 as described in Section 3. The meshes used
for obtaining both curves have been identical as geometrically CS 2× 2 is also a four-node
quadrilateral element. However, matrices of CS 2× 2 are obtained by modal synthesis as a
consequence of optimization process, therefore they are expected to produce lesser modal
errors. In the numerical experiment number N̂ in function (5) has been selected equal to
∼30% of the total number of modes of the sample domain. Consequently, in Figure 2(b),
curve 2 approximately 30% of modes have modal errors not exceeding 2%.
Nevertheless, the optimized models assembled of CS 2× 2 do not demonstrate a marked

di�erence in the modal error distribution when compared to the generalized mass matrix
models (curves 1 and 2 in Figure 2(b)). Much better results can be obtained by using larger
CSs. CS 5× 5 has been optimized to form structures with minimal modal errors over more
than 80% of the total amount of modes of the structure. The optimization results are pre-
sented in Figure 3. Figure 3(a) presents the modal errors of the sample domain 13× 13
nodes assembled of optimized CS 5× 5. The same CS 5× 5 assembled to 29× 29 node do-
main give modal errors presented in Figure 3(b). In both �gures curves displaying rela-
tive modal errors of the sample domain meshed by quadrilateral elements with generalized
(kL =0:35) mass matrices are presented for the sake of comparison. In both cases all modal
errors in the range of 80% of lower modes of the sample domain do not exceed 1–2% and
are much lesser than can be achieved by employing traditional generalized mass matrices.
On the other hand, Figure 3(a) and (b) justify the assumption that the modal error distri-
bution over the modal frequency range is nearly independent upon the size of the sample
domain.
The performance of the optimized CS with respect to traditional elements is demonstrated

in Figure 4 by analysing the acoustic wave pulse propagating through a very roughly meshed
domain. Excited by means of one sine pulse of normal velocity at the boundary excitation
zone (Figure 4(a)) the circular wave front propagates and is re�ected from the boundaries of
the domain. The curves in Figure 4(b) demonstrate the propagating wave shapes in terms of
the velocity potential obtained by using the optimized CS formulation and the reference wave
shape obtained as a convergent solution of a densely meshed model. An excellent performance
of the optimized model assembled of CS 5× 5 is demonstrated where only ∼5 elements used
per wave pulse length enabled to get the shape of the wave in close resemblance to the
reference wave shape. Traditional quadrilateral elements used at such low mesh densities
produce the resulting wave shape very di�erent from the reference wave.
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Figure 3. Relative modal errors of sample domains 13× 13 (a) and 29× 29 (b) nodes.
1—sample domain meshed by quadrilateral elements by using generalized (kL =0:35)
mass matrices (presented here for the sake of comparison); and 2—sample domain

assembled of CS 5× 5 optimized over 80% of modes.

Similar results can be observed by analysing quadrilateral elastic domains. Figure 5 presents
relative modal errors of lumped and consistent models. Generalized mass matrices obtained
by using the weight coe�cient kL =0:35 produce the relative error distribution less than 5%
over all modal frequency range. Therefore, computational wave propagation models obtained
by using such generalized mass matrices are expected to have a very good performance. By
performing the optimization process of the CS 3× 3 the relative modal errors can be further
diminished, Figure 5(b). However, relative modal frequency errors of several modes could
not be made lower than 4%.

5. CONCLUSIONS

The research presents highly convergent 2D computational models for wave propagation sim-
ulations consisting of rectangular substructures. The computational models are assembled of
optimized component substructures obtained by performing the optimization of the modal
properties of a sample domain. A CS can be treated as a higher-order element, however, the
principle of obtaining its matrices is di�erent from traditional higher-order elements as the
matrices of a CS are generated without directly using the shape functions as interpolation
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Figure 4. Acoustic wave propagating in a roughly meshed (13× 17) domain: (a) rough mesh and
velocity potential contour plot at a given time point; (b) reference shape of the wave (solid line) and
the wave shape along the centreline of the model obtained by using the optimized CS 5× 5 (marked
line-∗-); and (c) reference shape of the wave (solid line) and the wave shape along the bottom line of

the model obtained by using the optimized CS 5× 5 (marked line -o-).

tools. Optimized component substructures assembled to larger domains demonstrate the same
modal error distribution over the modal frequency range as has been obtained for the sample
domain. The same component substructures can be used for assembling real computational
domains of any size.
Though the computation of CS matrices is a time consuming procedure, the amount of the

computer resource necessary at this stage is not of a primary importance. As the obtained CS
are used for solving linear problems of short wave propagation, their matrices do not need
to be recalculated neither during the solution process nor before solving a new problem in a
new domain.
When compared with lumped, consistent or generalized mass matrices, optimized component

substructures produce signi�cantly better results. However, the mass matrices of the optimized
CS are non-diagonal. The obtained 2D models have very close-to-exact (less than 1–2% error)
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Figure 5. Relative modal errors of quadrilateral elastic sample domain 13× 13 nodes: (a) obtained by
using traditional elements with lumped (1), consistent (2) and generalized (3) mass matrices; and (b)
obtained by using the CS 3× 3 optimized over 80% of modes (2) compared to quadrilateral elements

with generalized mass matrices (1).

modal frequency values of more than ∼80% of the total amount of modes of the structure
and are able to present the propagating wave pulse shape by using only few nodal points per
wavelength. The drawback is that at the moment we are not able to treat complex geometries
by using the synthesized CS only. In complex geometries they should be combined with
domains meshed by traditional elements.
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